Iron enhances the antituberculous activity of pyrazinamide.

نویسندگان

  • Akos Somoskovi
  • Mary Margaret Wade
  • Zhonghe Sun
  • Ying Zhang
چکیده

BACKGROUND Pyrazinamide is a paradoxical frontline tuberculosis drug characterized by high in vivo sterilizing activity but poor in vitro activity. This separation in pyrazinamide activity reflects differences between the in vivo tissue environment and in vitro culture conditions. The well-known acid pH requirement for pyrazinamide activity was discovered previously based on such reasoning but does not completely explain the discrepancy between in vivo and in vitro activity of pyrazinamide. This study examined the effect of iron, which could potentially be elevated in local inflammatory lesions, on pyrazinamide activity in vitro. MATERIALS AND METHODS The effect of iron on the activity of pyrazinamide or its active derivative pyrazinoic acid against Mycobacterium tuberculosis was assessed in liquid medium in a drug exposure assay or in solid medium with pyrazinamide plus iron or pyrazinamide alone. The effect of iron on pyrazinamide or pyrazinoic acid was expressed as percentage of growth inhibition. RESULTS We have shown that iron enhances the activity of pyrazinamide and pyrazinoic acid against M. tuberculosis in both liquid and solid media at acid pH 5.6. Iron enhanced the activity of pyrazinoic acid but not pyrazinamide against the naturally pyrazinamide-resistant Mycobacterium bovis BCG. Other metal ions such as magnesium, calcium and zinc did not enhance the activity of pyrazinamide or pyrazinoic acid. CONCLUSIONS Iron increased the activity of pyrazinamide or pyrazinoic acid against M. tuberculosis in vitro. These findings may have implications for the study of mechanism of action of pyrazinamide and possible iron supplement for improving the activity of pyrazinamide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.

Pyrazinamide is an important sterilizing drug that shortens tuberculosis (TB) therapy. However, the mechanism of action of pyrazinamide is poorly understood because of its unusual properties. Here we show that pyrazinoic acid, the active moiety of pyrazinamide, disrupted membrane energetics and inhibited membrane transport function in Mycobacterium tuberculosis. The preferential activity of pyr...

متن کامل

Shoulder tuberculosis in children: a report of two cases.

We report 2 children who underwent multidrug antituberculous therapy with rifampicin, isoniazid, ethambutol, and pyrazinamide followed by dedicated physiotherapy for tuberculosis of the shoulder. Both patients regained a range of motion comparable with the contralateral side after 9 to 10 months.

متن کامل

Structure-Activity relationship in mutated pyrazinamidases from Mycobacterium tuberculosis

The pncA gene codes the pyrazinamidase of Mycobacterium tuberculosis, which converts pyrazinamide to ammonia and pyrazinoic-acid, the active antituberculous compound. Pyrazinamidase mutations are associated to pyrazinamide-resistant phenotype, however how mutations affect the structure of the pyrazinamidase, and how structural changes affect the enzymatic function and the level of pyrazinamide-...

متن کامل

Crystal Structure of the Pyrazinamidase of Mycobacterium tuberculosis: Insights into Natural and Acquired Resistance to Pyrazinamide

Pyrazinamidase (PncA) activates the first-line antituberculous drug pyrazinamide into pyrazinoic acid. The crystal structure of the Mycobacterium tuberculosis PncA protein has been determined, showing significant differences in the substrate binding cavity when compared to the pyrazinamidases from Pyrococcus horikoshii and Acinetobacter baumanii. In M. tuberculosis, this region was found to hol...

متن کامل

Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis.

The rise of multidrug-resistant Mycobacterium tuberculosis has complicated therapy for tuberculosis and led us to search for a potentially active combination of drugs against these strains. The susceptibilities of 12 strains of multidrug-resistant M. tuberculosis to standard antituberculous drugs (isoniazid, rifampin, ethambutol, and pyrazinamide), clarithromycin, and its metabolite, 14-hydroxy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2004